Co-ordinates

- Ordered pairs of numbers fix the position of a point on a plane relative to an origin
- Ordered pairs look like $(5,6)$ and $(-3,2)$. They are also called the co-ordinates of the point
- By convention, the first number in the pair tells you how far along the \mathbf{X} axis the point is and the second number says how far up the \mathbf{Y} axis the point is
- Below is a pair of axes showing both positive and negative co-ordinates on both axes - the axes show all four quadrants.
- Label the axes now!!

- Scale the axes using the scale $1 \mathrm{~cm}=1$ (i.e. two squares to 1 unit).
- Plot the following set of co-ordinates...
$(2,3)$
$(-2,-3)$
$(2,-3)$
- What shape do you get?
- Add a point to make an isosceles triangle from the shape - what co-ordinates does your extra point have?

More plotting

- Use a scale of one square to 1 this time
- Label and scale your axes
- Plot the following co-ordinates...
$(0,4)$
$(2,8)$
$(-5,-6)$
$(-1,2)$
$(-2,0)$
- What pattern do these points make?
- Find the co-ordinates of another point that follows the same pattern!
- On the same diagram above, plot these points - perhaps in a different colour
$(-3,9)$
$(1,5)$
$(5,1)$
(10, -4)
- Draw the line these points fall on
- What do you notice about this line? Write down two things that are different to the last line you drew
- Add up the X and Y co-ordinates in each of the points. What do you notice?

Check your answers against the model answers - perhaps swap with the person next to you and 'mark' each other's plotting.

